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TL;DR: RNA structure modelling remains a challenging problem for deep learning. Here we review and benchmark
flow matching approaches for RNA structure modeling with the hope that it will be a good summarization of related work.

@ ntroduction

* Ribonucleic acid (RNA) molecules are central to cellular
function, and their 3D structures are key to their diverse

functions.

* However, accurately modeling RNA 3D structures remains
a significant challenge due to limited experimental data
and the molecule's inherent flexibility.

* Flow matching, a generative technique learning complex

data distributions, has recently been adapted for diverse A hairpinloop froma

RNA structure modeling tasks targeting different goails.

pre-mRNA.
Source: wikipedia
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Image Credit: Anand et al. (2024)

1.Core Backbone Quality (Common Ground):

Image Credit: Hamu, Chen, Lipman (NeurlPS Tutorial)

* RNAbpFlow shows somewhat bi-modal distributions, suggesting

greater structural diversity. Bond angles and
dihedral distributions are interestingly
different among the two methods

* Furthermore, RNAbpFlow backbones have
significantly more steric clashes. Although the
original RNAbpFlow paper utilized standard
all-atom clash scores in its benchmarks, our
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* The recent applications of flow matching to RNA modeling has

taken diverse strategies targeting distinct sub problems.

Conceptual depiction of flow matching for RNA structure modelling
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Figure adapted from Anand et al. (2024)

» Evaluating these varied approaches requires a common baseline

focusing on fundamental geometric accuracy.
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€© Benchmarking Strategy

» Because the models target different outputs (backbone vs.
all-atom ), our strategy assesses both shared geometric quality
and unique task performance

C4'-focused result similarly suggests potential steric

challenges in structures generated by RNAbpFlow. * Goal: Evaluate and compare RNA-FrameFlow (unconditional
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*We generated 600 structures for RNA-FrameFlow and 200 structures for RNAbpFlow to obtain these results

2. Task-Specific Performance

= Here we list the most relevant task specific performances a

s reported in the original papers [1,3].

backbone) and RNAbpFlow (conditional all-atom) flow
matching methods.

» Approach: Hierarchical benchmarking focusing on:

o 1. Core Backbone Quality (Common Ground):

= Assess geometric realism via distributions of backbone bond lengths,
angles, and dihedrals.

* Quantify backbone steric clashes.

= Compare generated distributions against known RNA
geometry / training data.

o 2. Task-Specific Performance:

= RNA-FrameFlow: Evaluate validity using self-consistency TM-score
(scTM).

= RNAbpFlow: Evaluate accuracy vs. native structures (RMSD, TM-score,

Method Evaluation Task Metric Value
RNA-FrameFlow Self-Consistency % Validity (scTM = 0.45) 41.0% IDDT) and all-atom clashes.
Avg. T'V:;[C;re 8-5; o 3. Computational Efficiency:
: : Avg. :
RNAbpFlow Accuracy vs Native (Native BPs) Avg. RMSD (A) 2 29 - Compare sampling times.
Avg. Clash Score 46.97

© Conclusions & Future Work

3. Computational Efficiency
* Evaluated by timing the generation e _73.185
of 100 structures of length 96 for
both methods across 3 runs on a
NVIDIA RTX 4060 GPU o 20 a0 e s 100 12

Time to Generate 100 Structures (seconds)

Computational Efficiency Comparison (100 Samples)

» By the final report we intend to expand this benchmarking to all
four methods. With the obtained insights, we will postulate how
incorporating RNA sequence-derived information, could poten-
tially enhance the performance of these flow matching models.

RNA-FrameFlow 119.86 s
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